TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 13: Randomized Routing, Randomized
Complexity Classes

Recap

- Basic tail inequalities: Markov's inequality and Chebyshev's inequality. Properties of variance: $\operatorname{Var}\left(\sum_{i} X_{i}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$ if pairwise independent. Threshold phenomena in random graphs.
- Chernoff-Hoeffding bounds: stronger bounds on large deviations using full mutual independence. For X a sum of independent Bernoulli R.V.s, we get:

$$
\begin{aligned}
& >\mathbb{P}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\
& >\mathbb{P}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
\end{aligned}
$$

- For $\delta \in[0,1]$ get:
$>\mathbb{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}$
$>\mathbb{P}[X \leq(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 2}$
- Whp, poly (n) random vectors in $\{-1,1\}^{n}$ will all be nearly orthogonal. If toss n balls into n bins, whp no bin has >> $\frac{\log n}{\log \log n}$ balls in it.

A small extension of Chernoff-Hoeffding bounds

- Suppose $X=X_{1}+\cdots+X_{n}$ is a sum of independent Bernoulli $\left(p_{i}\right)$ R.V.'s with $\mu=\mathbb{E}[X]$.
- Suppose we have an upper-bound B on μ (i.e., $\mu \leq B$).
- Then we can say: $\mathbb{P}[X \geq(1+\delta) B] \leq e^{-\delta^{2} B / 3}$. [I.e., we can use B in exponent]

Analysis:

- Define $p_{1}^{\prime}, \ldots, p_{n}^{\prime} \in[0,1]$ such that $p_{i}^{\prime} \geq p_{i}$ and $\sum_{i} p_{i}^{\prime}=B$.

We can do this so long as $B \leq n$. If $B>n$ then the bound holds trivially.

- Define R.V. X_{i}^{\prime} : if $X_{i}=1$ then $X_{i}^{\prime}=1$; else if $X_{i}=0$ then $X_{i}^{\prime}=1$ with prob $\frac{p_{i}^{\prime}-p_{i}}{1-p_{i}}$.
- The X_{i}^{\prime} are independent Bernoulli $\left(p_{i}^{\prime}\right)$ R.V.s, so $\mathbb{P}\left[\sum_{i} X_{i}^{\prime} \geq(1+\delta) B\right] \leq e^{-\delta^{2} B / 3}$.
- But notice that $\sum_{i} X_{i}^{\prime} \geq \sum_{i} X_{i}$ always. So, our desired inequality holds too.

Low-congestion routing

Given a directed graph G and a collection of pairs of vertices $\left\{\left(s_{i}, t_{i}\right)\right\}$, we would like to route paths from s_{i} to t_{i} to minimize the maximum congestion (the number of paths using any given edge).

This problem is NP-hard. Can we get a good approximation?

Raghavan \& Thompson idea

- First solve the problem fractionally (also called "multi-commodity flow"):
$>$ For each (directed) edge (u, v) and each commodity i, have variable $x_{i,(u, v)}$.
\Rightarrow For each i have constraints: $\sum_{v} x_{i,\left(s_{i}, v\right)}=1, \sum_{u} x_{i,\left(u, t_{i}\right)}=1$, and flow-in = flowout for all $v \notin\left\{s_{i}, t_{i}\right\}: \sum_{u} x_{i,(u, v)}=\sum_{u^{\prime}} x_{i,\left(v, u^{\prime}\right)}$. Also, non-negativity.
$>$ Then for each edge (u, v) have constraint $\sum_{i} x_{i,(u, v)} \leq C$ and minimize C.
- Note that if opt is the value of the optimal solution to the original problem, then $C \leq o p t$, because this is a relaxation. But now we have to convert our flow into a collection of $s_{i}-t_{i}$ paths.

Raghavan \& Thompson idea

- First solve the problem fractionally (also called "multi-commodity flow"):

For each (directed) edge (u, v) and each commodity i, have variable $x_{i,(u, v)}$.
$>$ For each i have constraints: $\sum_{v} x_{i,\left(s_{i}, v\right)}=1, \sum_{u} x_{i,\left(u, t_{i}\right)}=1$, and flow-in $=$ flowout for all $v \notin\left\{s_{i}, t_{i}\right\}: \sum_{u} x_{i,(u, v)}=\sum_{u^{\prime}} x_{i,\left(v, u^{\prime}\right)}$. Also, non-negativity.
$>$ Then for each edge (u, v) have constraint $\sum_{i} x_{i,(u, v)} \leq C$ and minimize C.

- Next, for each i, we view the values $x_{i,(u, v)}$ as probabilities and select a path from s_{i} to t_{i} such that for each $(u, v), \mathbb{P}[(u, v)$ is selected $]=x_{i,(u, v)}$.
$>$ Claim: we can do this by starting from s_{i} and choosing an outgoing edge with probability proportional to the flow of commodity i on that edge, continuing until t_{i} is reached.

Raghavan \& Thompson idea

- First solve the problem fractionally (also called "multi-commodity flow"):

For each (directed) edge (u, v) and each commodity i, have variable $x_{i,(u, v)}$.
\Rightarrow For each i have constraints: $\sum_{v} x_{i,\left(s_{i}, v\right)}=1, \sum_{u} x_{i,\left(u, t_{i}\right)}=1$, and flow-in = flowout for all $v \notin\left\{s_{i}, t_{i}\right\}: \sum_{u} x_{i,(u, v)}=\sum_{u^{\prime}} x_{i,\left(v, u^{\prime}\right)}$. Also, non-negativity.
$>$ Then for each edge (u, v) have constraint $\sum_{i} x_{i,(u, v)} \leq C$ and minimize C.

- Next, for each i, we view the values $x_{i,(u, v)}$ as probabilities and select a path from s_{i} to t_{i} such that for each $(u, v), \mathbb{P}[(u, v)$ is selected $]=x_{i,(u, v)}$.
$>$ Proof: Consider the DAG of flows of commodity i. Argue by induction on this DAG, using the flow-in = flow out constraint.

Raghavan \& Thompson idea

- First solve the problem fractionally (also called "multi-commodity flow"):
- Next, for each i, we view the values $x_{i,(u, v)}$ as probabilities and select a path from s_{i} to t_{i} such that for each $(u, v), \mathbb{P}[(u, v)$ is selected $]=x_{i,(u, v)}$.
Claim: If opt $\gg \log n$ then whp this will find a solution of max congestion $\leq(1+o(1)) \cdot o p t$. For any value of $o p t$, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot o p t\right)$. Proof:
- Let $X_{i,(u, v)}$ be an indicator R.V. for the event that we use edge (u, v) in the $s_{i}-t_{i}$ path.
- $\mathbb{E}\left[X_{i,(u, v)}\right]=x_{i,(u, v)}$, and $X_{1,(u, v)}, X_{2,(u, v)}, \ldots$ are independent for any given (u, v).
- So, we can apply Chernoff-Hoeffding to $X_{(u, v)}=\sum_{i} X_{i,(u, v)}$, where $\mathbb{E}\left[X_{(u, v)}\right] \leq o p t$.

Raghavan \& Thompson idea

 constant $\delta>0$, so the chance there exists an edge with greater congestion is $o(1)$.

Claim: If opt $\gg \log n$ then whp this will find a solution of max congestion $\leq(1+o(1)) \cdot o p t$. For any value of $o p t$, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot o p t\right)$. Proof:

- Let $X_{i,(u, v)}$ be an indicator R.V. for the event that we use edge (u, v) in the $s_{i}-t_{i}$ path.
- $\mathbb{E}\left[X_{i,(u, v)}\right]=x_{i,(u, v)}$, and $X_{1,(u, v)}, X_{2,(u, v)}, \ldots$ are independent for any given (u, v).
- So, we can apply Chernoff-Hoeffding to $X_{(u, v)}=\sum_{i} X_{i,(u, v)}$, where $\mathbb{E}\left[X_{(u, v)}\right] \leq o p t$.

Raghavan \& Thompson idea

 constant $\delta>0$, so the chance there exists an edge with greater congestion is $o(1)$.

Claim: If opt $\gg \log n$ then whp this will find a solution of max congestion $\leq(1+o(1)) \cdot o p t$. For any value of $o p t$, whp this will find a solution of congestion $O\left(\frac{\log n}{\log \log n} \cdot o p t\right)$. Proof:

- For any value of opt, can use $\mathbb{P}\left[X_{(u, v)} \geq k o p t\right]<\left(\frac{e^{k-1}}{k^{k}}\right)^{o p t} \leq \frac{e^{k-1}}{k^{k}}$. Set $k=\frac{3 \ln n}{\ln \ln n}$ and get $o\left(1 / n^{2}\right)$ as desired.

Randomized Complexity Classes

- Introduce RP and BPP, which are randomized versions of complexity class P.
- Formally, considering decision (YES/NO) problems. E.g., "does the given graph G have a perfect matching?"
- Definition: An algorithm runs in polynomial time if for some constant c, its running time on instances of size n is $O\left(n^{c}\right)$.
- Definition: \mathbf{P} is the class of decision problems solvable by deterministic polynomial-time algorithms.

To define randomized complexity classes, will consider algorithms A that take in two inputs: an instance I and an auxiliary input y, which is a bit string of length polynomial in the size of I. Think of y as the random bits used by A.

Randomized Complexity Classes

- Definition: A problem Q is in RP if there exists a polynomial-time algorithm $A(I, y)$ and a polynomial r such that:
$>$ If I is a YES-instance then $\mathbb{P}_{y \in\{0,1\}^{r(I I)}}[A(I, y)=Y E S] \geq \frac{1}{2}$.
$>$ If I is a NO-instance then $\mathbb{P}_{y \in\{0,1\}^{r(I I)}}[A(I, y)=Y E S]=0$.
RP corresponds to problems solvable by randomized algorithms with 1-sided error.
E.g., we showed Perfect Matching $\in \mathbf{R P}$ because we gave an algorithm such that if G has a perfect matching, then the algorithm says YES with probability $\geq 1 / 2$ (because the Tutte polynomial is not identically 0), and if G does not have a perfect matching, then the algorithm is guaranteed to say NO.

Randomized Complexity Classes

- Definition: A problem Q is in BPP if there exists a polynomial-time algorithm $A(I, y)$ and a polynomial r such that:
$>$ If I is a YES-instance then $\mathbb{P}_{y \in\{0,1\}}{ }^{r(I I)}[A(I, y)=Y E S] \geq \frac{3}{4}$.
$>$ If I is a NO-instance then $\mathbb{P}_{y \in\{0,1\}^{r(I I)}}[A(I, y)=Y E S] \leq \frac{1}{4}$.
BPP corresponds to randomized algorithms with 2-sided error.

It is believed that $\mathbf{P}=\mathbf{R P}=\mathbf{B P P}$, but there is no deterministic polynomial-time algorithm known for the polynomial identity-testing problem.

One more interesting complexity class to mention, $\mathrm{P} /$ poly, which is the class of problems solvable in "non-uniform polynomial time".

Randomized Complexity Classes

- Definition: A problem Q is in $\mathbf{P} /$ poly if there exists a polynomial-time algorithm $A(I, y)$ and a polynomial r such that for every n there exists a string $y_{n} \in\{0,1\}^{r(n)}$ such that $A\left(I, y_{|I|}\right)$ is always correct.
Think of y_{n} as an "advice" string for inputs of size n.

```
There could be 2}\mp@subsup{2}{}{n}\mathrm{ inputs of size n, but \(y_{n}\) has size only \(r(n)\), so it can't just encode all the answers.
```

Claim: $\mathbf{R P} \subseteq P /$ poly. (You will show BPP $\subseteq P /$ poly on your homework).
Proof: Suppose $Q \in \mathbf{R P}$. So, there exists algo A and polynomial r satisfying RP definition.

- Define A^{\prime} that on instance I of size n uses auxiliary input y_{n} of length $(n+1) r(n)$ to perform $n+1$ runs of A and output YES if any run gives YES, else NO.
- $\mathbb{P}_{y_{n}}\left[A^{\prime}\left(I, y_{n}\right)\right.$ fails $] \leq 1 / 2^{n+1}$.
- $\mathbb{P}_{y_{n}}\left[\right.$ exists I of size n s.t. $A^{\prime}\left(I, y_{n}\right)$ fails $] \leq \frac{2^{n}}{2^{n+1}}=\frac{1}{2}$. So, a good y_{n} must exist.

